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Abstract

Contente, Carolina de Oliveira; Ayala, Helon Vicente Hult-
mann (Advisor). Vibration monitoring of mechanical systems
using deep and shallow learning on edge-computers. Rio de
Janeiro, 2022. 59p. Dissertação de Mestrado – Departamento de
Engenharia Mecânica, Pontifícia Universidade Católica do Rio de
Janeiro.

Structural health monitoring has been the focus of recent developments
in vibration-based assessment and, more recently, in the scope of the internet
of things as measurement and computation become distributed. Data has be-
come abundant even though the transmission is not always feasible, especially
in remote applications. It is thus essential to devise data-driven model work-
flows that ensure the best compromise between model accuracy for condition
assessment and the computational resources needed for embedded solutions.
This topic has not been widely used in the context of vibration-based mea-
surements. In this context, the present research proposes two approaches for
two applications, a static and a rotating one. In case one, a modeling work-
flow capable of reducing the dimension of autoregressive model features using
principal component analysis and classifying this data using some of the main
machine learning techniques such as logistic regression, support vector machi-
nes, decision tree classifier, k-nearest neighborhood and random forest classi-
fier was proposed. The three-story building example was used to demonstrate
the method’s effectiveness, together with ways to assess the best compromise
between accuracy and model size. In case two, a test rig composed of rota-
ting inertias and slender connecting rods is used, and the monitoring solution
was tested in an embedded GPU-based platform. The models implemented to
effectively distinguish between different friction states were principal compo-
nent analysis, deep autoencoder and artificial neural networks. Shallow models
perform better concerning running time and accuracy in detecting faulty con-
ditions.

Keywords
Structural Health Monitoring; Systems Identification; Machine Learning;

Supervised Learning; Unsupervised Learning.
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Resumo

Contente, Carolina de Oliveira; Ayala, Helon Vicente Hultmann.
Monitoramento de vibração em sistemas mecânicos usando
aprendizado profundo e raso em computadores na ponta.
Rio de Janeiro, 2022. 59p. Dissertação de Mestrado – Departamento
de Engenharia Mecânica, Pontifícia Universidade Católica do Rio
de Janeiro.

O monitoramento de integridade estrutural tem sido o foco de desenvol-
vimentos recentes no campo da avaliação baseada em vibração e, mais recente-
mente, no escopo da internet das coisas à medida que medição e computação se
tornam distribuídas. Os dados se tornaram abundantes, embora a transmissão
nem sempre seja viável em frequências mais altas especialmente em aplicações
remotas. Portanto, é importante conceber fluxos de trabalho de modelo ori-
entados por dados que garantam a melhor relação entre a precisão do modelo
para avaliação de condição e os recursos computacionais necessários para solu-
ções incorporadas, tópico que não tem sido amplamente utilizado no contexto
de medições baseadas em vibração. Neste contexto, a presente pesquisa propõe
abordagens para duas aplicações: na primeira foi proposto um fluxo de trabalho
de modelagem capaz de reduzir a dimensão dos parâmetros de modelos autor-
regressivos usando análise de componentes principais e classificar esses dados
usando algumas técnicas de aprendizado de máquina como regressão logística,
máquina de vetor de suporte, árvores de decisão, k-vizinhos próximos e floresta
aleatória. O exemplo do prédio de três andares foi usado para demonstrar a
eficácia do método. No segundo caso, é utilizado um equipamento de teste
composto por inércias rotativas onde a solução de monitoramento foi testada
em uma plataforma baseada em GPU embarcada. Os modelos implementados
para distinguir eficazmente os diferentes estados de atrito foram análise de
componentes principais, deep autoencoders e redes neurais artificiais. Modelos
rasos têm melhor desempenho em tempo de execução e precisão na detecção
de condições de falha.

Palavras-chave
Monitoramento da Integridade Estrutural; Identificação de Sistemas;

Aprendizado de Máquina; Aprendizado Supervisionado; Aprendizado não
Supervisionado.
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1
Introduction

1.1
Contextualization and motivation

Civil, nautical and aeronautical structures, among others, are subject
to operational and environmental conditions that may change over time as
material deterioration, wind and traffic loads, and earthquakes. These changes
in operational and environmental conditions impose difficulties in the detection
and identification of structural damage [1].

In this context, 7.5% of bridges in the United States are classified as
structurally deficient, with many elements approaching their end of service
life. And also, more than 30% of the 617,000 highway bridges need attention
due to deteriorating conditions [2].

Several accidents were highlighted in the media, bringing attention to the
importance of structural health monitoring (SHM) techniques and the need to
monitor structures constantly. The I-35W St. Anthony Falls Bridge over the
Mississippi River near downtown Minneapolis (Minnesota, USA) was one of
these cases, illustrated in Figure 1.1. The bridge collapsed on August 1, 2007,
bringing down 111 vehicles. Some studies were conducted years before the
collapse, reporting damages to the bridge structure. But nothing that could
prevent possible accidents was done.

The occurrence of failures in equipment and structures is usually associ-
ated with three leading causes: friction, impact, and fatigue. The monitoring
of these structures is essential for the operation according to the project spec-
ifications, avoiding higher costs with parts replacement and interference in
production progress.

It is fundamentally necessary to detect the failure to map the conditions
of structural failures, which involves locating, quantifying, and estimating its
magnitude [4]. The maintenance of structures must be performed regularly
and can be divided into three stages: corrective, preventive, and predictive
maintenance. Corrective maintenance aims to repair structures or equipment
that have already suffered some type of damage. Preventive and predictive
maintenance are similar but in predictive maintenance, no intrusion into the
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Chapter 1. Introduction 16

Figure 1.1: Aerial view of the collapsed I-35W St. Anthony Falls Bridge over
the Mississippi River, availabe in [3]

structure or equipment occurs, while preventive action only occurs when
a possible failure is detected [5]. Predictive maintenance matters for this
dissertation, where data is collected over time to monitor the structural
condition to predict and prevent possible failures.

Inspection procedures are essential to provide assistance maintenance to
structures that may be subjected to future failure. Brasiliano [6] stated that
visual inspections are commonly made to adopted to assess structural condi-
tions and detect damage. However, it has become inefficient and inadequate
due to the high complexity of some structures, especially concerning identify-
ing damages invisible to the human eye. Technologies have been developed to
replace qualitative visual inspection and time-based maintenance procedures
with more quantifiable and automated damage assessment processes, such as
traditional vibration analysis, extensometry, ultrasound, eddy currents. In this
context, SHM is considered, which aims to obtain information about the con-
ditions of a given structure or parts of a structure.

According to Bornn et al. [7] and illustrated in Fig 1.2, there are four
steps for SHM: (1) operational evaluation, (2) data acquisition, (3) feature
extraction, and (4) statistical classification of the features; described by
Figueiredo [8] as the statistical pattern recognition (SPR) paradigm.

First, an operational evaluation must be performed to determine the jus-
tification for monitoring the structure, how damage is defined for the monitored
system, and determine the operational and environmental conditions under
which the system functions. By doing this, some limitations are set on what
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will be monitored and how this monitoring will be done, so the system aspects
that feature the possible damage condition are well detected. The data acqui-
sition part of the process consists in selecting the excitation methods such as
sensor types, the number of sensors, places where the sensors will be fixed, and
data acquisition hardware. The third step includes damage-sensitive features
extraction. Extracting these features means fitting these data into a model and
measuring the response data. The predicted error generated by this extraction
becomes the damage-sensitive features that are data that vary according to the
change in the damage level. Last, the statistical classification of the parame-
ters is to be made by implementing algorithms that analyze the distributions
of the extracted features. According to Figueiredo [8] these algorithms fall into
three main groups: classification, regression, and outlier detection. The ideal
algorithm for each application depends on the ability to perform supervised
or unsupervised learning. Supervised learning can be deployed if examples of
damage and undamaged data are available. If only undamaged data examples
are known, unsupervised learning is the recommended type of algorithm.

Figure 1.2: SPR paradigm for SHM, adapted from [8]

1.2
Literature Review

Several types of structures may be subjected to changes in their nominal
operational status and possible failures. Static structures such as buildings
or bridges are constantly under monitoring since their safety and reliability
have to be improved, and if there are any damages to their structures, it has
to be detected before it reaches a critical state. Over the years, some studies
have been developed on data classification using different approaches to obtain
features and classify them. This past literature guided the research in terms
of methods choice and evaluation criteria.
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Chapter 1. Introduction 18

Figueiredo et al. [9], in 2009, studied four different methods for extract-
ing linear features and obtained an optimal linear model for the three-story
building problem. Among the methods were Akaike Information Criterion
(AIC), Partial Autocorrelation Function (PAF), Root Mean Squared Error
(RMSE), and Singular Value Decomposition (SVD); concluding that autore-
gressive models (AR) of orders 5, 15, and 30 can represent the behavior of the
proposed system adequately.

Figueiredo [8], in another paper publisehd in 2010, applies machine
learning tools to classify the obtained linear features. This work uses four
kernel-based algorithms to detect damage under varying operational and
environmental conditions. Among the methods used are Auto-associative
neural network (AANN), Factor Analysis (FA), Mahalanobis Squared Distance
(MSD), and SVD, concluding that in terms of general performance, the MSD-
based algorithm proved to be the best approach with the lowest type I and II
error rates.

The next year Li et al. [10] utilized damage pattern changes in frequency
response functions (FRFs) and artificial neural networks to identify damage
states. To extract the damage-sensitive features, PCA was the chosen tech-
nique.

Nguyen et al. [11] used a method based upon the Monte Carlo simula-
tion methodology to assess the condition of output data obtained from the
autoregressive model. In this work, the determination of the order of the au-
toregressive model was by RMSE.

Santos et al. [12] applied other different tools for the classification of the
features, including One-Class Support Vector Machine (One-class SVM), Sup-
port Vector Data Description (SVDD), Kernel Principal Component Analysis
(KPCA), and Greedy Kernel Principal Component Analysis (GKPCA). The
conclusion was that the proposed methods have better classification perfor-
mance when compared to methods previously used (AANN, FA, MSD, and
SVD) due to lower classification errors (Type I and Type II).

Gui et al. [13] used two types of feature extraction methods: the au-
toregressive model and the residual errors of the statistical parameters. This
paper describes some methods to determine the SVM parameters: grid search
method, particle swarm optimization, and genetic algorithm. SVM was the
chosen method to classify the extracted data, concluding that the three ways
had good performances, although the genetic algorithm-based SVM had a bet-
ter prediction than the others.

Pan [14], in his work, developed a feature extraction method based on
Singular Value Decomposition (SVD) by designing a Hankel matrix to enhance

DBD
PUC-Rio - Certificação Digital Nº 1912743/CA



Chapter 1. Introduction 19

multivariate analysis comparing to other traditional feature extraction meth-
ods such as autoregressive model (AR) and multivariate vector autoregressive
model (VAR).

More recently, in 2020, Zhang et al. [15] used the deep learning technique,
a compact model of a convolutional neural network (CNN), to identify porosity
during a 6061 Aluminum alloy welding process.

When it comes to machinery and equipment, the rotating parts are
the ones that need good attention and monitoring. Rotating machines are
ubiquitously used to transform and transmit power, being essential equipment
for monitoring in manufacturing [16]. Devices such as milling [17] and precision
machining [18] may be indirectly monitored using vibration measurements,
as the modes and frequency spectra are changed in consequence of faulty
conditions [19]. However, such signals are often difficult to analyze, requiring
automatic data-driven monitoring tools such as machine learning [20, 21, 15,
22]. In some cases, it is necessary to make it possible for complex models to run
on embedded hardware platforms to perform online diagnosis at high-frequency
rates, such as the NVidia Jetson, a GPU-based ©platform. Devices like this can
enable applications that should run decentralized, at high-frequency rates, with
relatively complex models that will, in turn, allow more accurate monitoring
and decision making in the context of edge computing.

Back in 2011, Moura et al. [23] performed an evaluation of fault recogni-
tion efficiency for various combinations of signal processing and pattern recog-
nition techniques combined to diagnose the severity of bearing faults using
PCA and ANN.

Abdeljaer et al. [24] used a structural damage detection system using 1D
Convolutional Neural Networks (CNNs) that was able to to fuse both feature
extraction and classification blocks into a unique learning body.

Mittal [25] in his paper provided a survey on works that evaluate and
optimize neural network applications on the Nvidia Jetson platform. Giubilato
et al. [26] show that embedded GPU-based performance gains in terms of
robustness, resource utilization, and processed frames per second when it comes
to the use of a Nvidia Jetson TX2 board instead of a standard workstation-
grade computer for Visual Simultaneous Localization and Mapping (SLAM).

Pan et al. [27] proposed a two-stage prediction method based on extreme
learning machine (ELM) in order to classify data and predict the remaining
useful life of rolling-element bearings. Pinto de Aguiar et al. [28] performed an
experimental benchmark between NVIDIA’s Jetson Nano and Google’s USB
Accelerator to use Deep Learning to solve a feature extraction issue in the
vineyard context.
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More recently, in 2021, Verma et al. [29] used a triaxial MEMS accelerom-
eter (ADXL-345) interfaced with a Raspberry pi 3 (edge device) in order to
evaluate an edge-cloud performance for IoT based machinery vibration moni-
toring.

Based on the foregoing, some methods were chosen to conduct this re-
search: PCA and Autoencoder to perform dimensionality reduction and Logis-
tic regression, support vector machine, decision tree, k-nearest neighborhood,
random forest and neural networks to perform the classification of the data.

1.3
Objective

1.3.1
General objective

The objective of this dissertation involves applying SHM statistical pro-
cedures for feature extraction and classification to detect damage to structures.
For this, the techniques are used on two datasets measured from a three-story
building laboratory bench [8] and a slender experimental rig [30].

1.3.2
Specific objectives

For the first case, the following specific objectives are to be achieved:
- Perform linear feature extraction of an AR model;
- Reduce the dimensionality of the features matrix;
- Perform the binary classification of the full data, PCA reduced data and
each individual channel using the proposed methods;
- Analyse the results comparing model size and accuracy results.

And for the second case, these are the specific objectives:
- Reduce the data dimensionality using PCA and Autoecoder;
- Perform the classification of the data using the proposed methods;
- Analyse the results comparing accuracy results, inference time (in seconds)
and model size.

1.4
Contributions and Publications

This dissertation considers the context of the SPR paradigm contributing
to steps three and four of the paradigm.
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The first contribution, entitled "Establishing Compromise between Model
Accuracy and Hardware Use for Distributed Structural Health Monitoring,"
published in the XV Simpósio Brasileiro de Automação Inteligente - SBAI
Annals, proposes the use of a well-known input/output data-based mathemat-
ical model, the AR model to estimate the damage-sensitive features, assuming
that the structure presents a linear behavior in its undamaged condition. This
work demonstrates that the use of AR features of different sensors distributed
along the structure provides the best results in terms of shear accuracy when
using the most commonly used shallow models and that it is possible to ob-
tain much smaller models when using dimensionality reduction methods before
creating the supervised models without sacrificing the model accuracy signif-
icantly. More specifically, using the principal components of the feature space
composed of the AR parameters of four accelerometers as features, a decrease
in the size of the best model was observed by 27,15%. In contrast, the overall
accuracy of the model shrank by only 1,64%. It is important to highlight that
the size of the models is essential as, in general, smaller models tend to gen-
eralize better, but also, maybe more importantly, smaller models are easier to
deploy and maintain in embedded hardware setups. Additionally, concerning
the use of a single measurement for SHM, it is shown that (i) using sensors
closer to the damage location increases the accuracy, and (ii) using more than
one sensor, even if it is far from the damage, can increase the accuracy of dam-
age detection. This highlights the importance of the present work. It shows
that it is necessary to devise methods that can orchestrate many sensors si-
multaneously while keeping the size of the model compact to enable embedded
and distributed solutions.

When it comes to rotating machines, there is the second contribution
entitled "Rotating Machines Vibration Monitoring with Deep and Shallow
Learning on Nvidia Jetson Embedded Computers" that was submited for
publication in Manufacturing Letters (MFGLET). This work is concerned with
monitoring rotating machines subject to increasing friction while under faulty
states, using a GPU-based platform guaranteeing real-time characteristics. We
use an experimental setup with rotating inertias and a low-stiffness slender
connecting rod to represent rotating machinery responses to different abnormal
conditions. The embedded hardware is employed using unsupervised learning,
leading to new research directions in rotating equipment monitoring using
complex data-driven modeling paradigms.
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1.5
Document structure

This dissertation is organized into the following chapters:
- Chapter 1 - Introduction: introduces the dissertation, its motivation,

and goals; briefly reviews the literature related to machine learning techniques
applied to structural health monitoring cases and points out the contribution
of this work.

- Chapter 2 - Theoretical Background: presents a theoretical review re-
garding systems models, dimensionality reduction techniques, feature extrac-
tion techniques, statistical algorithms for feature classification, and machine
learning methods;

- Chapter 3 - Establishing compromise between model accuracy and
hardware use for distributed structural health monitoring: focus on describing
the contributions, process, and results obtained from the Three-Story Building
case study;

- Chapter 4 - Rotating Machines Vibration Monitoring with Deep and
Shallow Learning on Nvidia Jetson Embedded Computers: focus on describing
the contributions, process, and results obtained from the Rotational Test Rig
case study;

- Chapter 5 - Conclusions: summarizes the conclusions based on the
results obtained and lists recommendations for future work.
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2
Theoretical Background

In this chapter, feature extraction, classification, and validation methods
used in this work are devised.

2.1
Feature extraction and dimensionality reduction models

The Autoregressive model was chosen for feature extraction since AR
models can be used as damage-sensitive feature extractors based on the AR
parameters (used in this work) or residual errors. [9]

2.1.1
Autoregressive Model (AR)

The autoregressive model AR(p) is a statistical model that represents
a process. It was first applied by Klein on 1997 on Yule’s 1927 analysis of
the time-series behavior of sunspots [31]. This model was considered to obtain
the linear parameters with a total of p = na parameters to estimate, being p
the model order, disregarding the input data of the system. It can be written
in (2-1), being xi the measured signal at time ti. The εi term refers to the
residual error at the sampling instant i. It can be written as given in (2-2).

xi =
p∑

j=1
ϕjxi−j + εi (2-1)

εi = x1 − x̂i (2-2)

being x̂i the predicted measure at sampling instant i. The parameter ϕj is
estimated using batch least-squares approaches or Yule-Walker equations [32].

2.1.2
Principal Component Analysis (PCA)

Some methods are required to reduce its dimensionality in an inter-
pretable way preserving most information to interpret large datasets [33]. One
of the oldest methods to do such a thing is the principal component analysis
(PCA). It was first proposed by Karl Pearson in 1901 and later renamed by
Harold Hotelling in 1933 [34]. Mainly, it performs the pre-processing of the
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data by mean subtraction and setting variance to 1 before performing singular
value decomposition [35]. It computes the mean matrix as given in (2-3) where
x̄ is the row-wise mean, calculated in (2-4).

X̄ =


1

. . .

1

 x̄ (2-3)

x̄j = 1
n

n∑
i=1

Xij (2-4)

Subtracting the mean matrix from the large matrix X results in the mean-
subtracted data B given in (2-5).

B = X − X̄ (2-5)
The first principal component is given

u1 = argmax u∗
1B

∗Bu1; ∥u1∥ = 1, (2-6)

being the eigenvector of B∗B the largest eigenvalue [35].

It is also possible to obtain the principal components by computing the
eigenvalue decomposition of the covariance matrix (C), as given in (2-7) and
C is calculated in (2-8) [35].

CV = V D (2-7)

C = 1
n − 1B∗B. (2-8)

Being C the covariance matrix, V the matrix eigenvectors of C and D the
diagonal matrix of all eigenvalues of C.

2.2
Machine learning models

This section presents the machine learning methods chosen for this
application. All machine learning methods chosen to perform the classification
of the extracted features are supervised methods and are the following.
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2.2.1
Support Vector Machine (SVM)

Support Vector Machines are potent methods for performing classifica-
tion of small to medium-sized datasets. It was proposed by Boser et al. [36].
It is a supervised learning algorithm that aims to classify a set of data points
mapped to a multidimensional characteristic space using a kernel function.

A training vector in two classes given as xi ∈ Rn, i = 1, ..., l and an
indicator vector y ∈ Rl as yi ∈ {1, 1} [37], SVM solves the primal optimization
problem as following

min w, b, ξ
1
2wT w + C

l∑
i=1

ξi

subject to yi

(
wT ϕ (xi) + b

)
≥ 1 − ξi,

ξi ≥ 0, i = 1, ..., l

(2-9)

Where C > 0 is the regularization parameter and ϕ (xi) maps xi int
a higher dimensional space. The main goal is to find w ∈ Rn and b ∈ R so
the prediction given by sign(wTϕ (xi) + b) is correct for the majority of the
samples. The result for the part yi

(
wTϕ (xi) + b

)
) is ideally ≥ 1 for all samples

indicating perfect prediction, but not all cases are perfectly separable, so the
algorithm allow some samples to be distant in ξi from their correct margin
boundary.

The vector variable w can have higher dimensionality, and this problem
is solved in (2-10). After the problem solving, the output decision function is
given in (2-11), and its sign corresponds to the predicted class.

min ∝ 1
2 ∝T Q ∝ −eT ∝

subject to yT ∝= 0,

0 ≤∝i, i = 1, ..., l

(2-10)

w =
l∑

i=1
yi ∝i K (xi, x) (2-11)

Where e is a vector of ones, Q is a l × l positive semi definite matrix, ∝i are the
dual coefficients upper-bounded by C and K (xi, x) is the kernel given by (2-12).

K (xi, xj) = ϕ (xi)T ϕ (xj) (2-12)
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2.2.2
Logistic Regression (LGR)

Logistic Regression is one of the most common methods used for binary
data response. It was first proposed in the 19th century to describe the growth
of population and the course of chemical reactions [38]. The model takes
the natural logarithm of the odds as a regression function of the predictors
being the odds the ratio of the probability of the event happening and the
probability of the event not happening [39]. It will model the probability based
on individual characteristics, which is given by

log
(

π

1 − π

)
= β0 + β1x1 + β2x2 + . . . + βmxm (2-13)

where π is the probability of the event, βi is the regression coefficient, and xi

the explanatory variable [40].

2.2.3
Decision Tree Classifier (DTC)

It was proposed by Breiman et al. [41] in 1984 motivated by a Bayesian
model. A decision tree is a structure to express a sequential classification
process [42]. According to Rokach and Maimon [43], a decision tree is formed
by nodes that can be “root” nodes that have no incoming edges and “internal
or test” nodes that have outgoing edges. All other nodes are called leaves of
the tree. Each internal node splits into two or more sub-spaces, and each leaf is
assigned to one class representing the ideal target value. Some criteria can be
used to measure the quality of the tree. Two main methods were used: the Gini
index and information gain. The Gini Index measures divergences between the
probability distributions of the target attribute’s values and is defined in (2-14)
[43].

Gini (y, S) = 1 −
∑

cjϵdom(y)


∣∣∣σy=cj

S
∣∣∣

|S|

2

(2-14)

Where S is the training set and y is the probability vector of the target
attribute. The evaluation criterion for selecting the attribute ai is given in
Eq. (2-15).

GG (ai, S) = Gini (y, S) −
∑

vi,jϵdom(ai)

∣∣∣σai=vi,j
S

∣∣∣
|S|

· Gini
(
y, σai=vi,j

S
) (2-15)
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Where GG is the Gini Gain. On the other hand, another univariate criterion
to decide the best attribute to split is the impurity-based criterion that uses
the entropy method as an impurity measure.

IG (ai, S) = E (y, S) −
∑

vi,jϵdom(ai)

∣∣∣σai=vi,j
S

∣∣∣
|S|

· E
(
y, σai=vi,j

S
) (2-16)

where E stands for entropy and is calculated in (2-17).

E (y, S) =
∑

cjϵdom(y)
−

∣∣∣σy=cj
S

∣∣∣
|S|

· log2

∣∣∣σy=cj
S

∣∣∣
|S|

(2-17)

The search for a split won’t stop until at least one valid partition of the node
samples is found.

2.2.4
K-nearest Neighbourhood (KNN)

Proposed by Evelyn Fix and Joseph Hodges [44] in 1951 and later
expanded by Thomas Cover [45] in 1967. The KNN method searches for groups
of K objects in the closest training data to similar objects in test data and
based on the distance the K nearest neighbors identified and classified [42].
The Euclidian distance is one typical distance metric and is given by (2-18).

d (p, q) =
√∑

(pi − qi)2 (2-18)

2.2.5
Random Forest Classifier (RFC)

A random forest classifier, proposed by Breiman [46] in 2001, is an
assembly of several decision trees, generally trained via the bagging method.
It creates random decision trees, gets the prediction of each tree, and selects
the best solution through voting [47]. A scheme of a random forest classifier is
illustrated in Fig. 2.1.

In this classifier, a random vector Θk is produced with the same distri-
bution but independent of the past random vectors independent of the past
random vectors Θ1, ..., Θk−1. Each tree is grown using a training set and a
random vector Θk resulting in a classifier {h(x, Θx), k = 1, · · · } at input vector
x [46].
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The generalization error is given by Equation (2-19) where X and Y are
random vectors that indicate that the probability is over X,Y space. The marin
function mg measures the extent to which the average number of votes at the
random vectors exceeds any other class’s average vote.

Figure 2.1: Workflow of a Random Forest Classifier, adapted from [48]

PE∗ = PX,Y (mg(X, Y ) < 0)) (2-19)
The margin function is defined in Equation (2-21) where I is the indicator

function [46].

mg(X, Y ) = avkI(hk(X) = Y ) − maxj ̸=Y avkI(hk(X) = j) (2-20)

In this particular case, the random forest consists of 100 trees, and the
forest chooses a class considering the most out of 100 votes.
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2.2.6
Feedforward Neural Network (FFANN)

Neural networks started as a very popular machine learning algorithm
named perceptron and it was proposed by Rosenblatt [49] in 1958. An artificial
neural network (ANN) is a group of interconnected mathematical modules
called artificial neurons or nodes. These artificial neurons apply a mathematical
activation function to the sum of the weighted inputs. The outputs generated
by this action may be connected to a bias and produce a sequence of real-
valued activation’s [50]. They are usually organized in layers, and it consists of
the input, output, and the hidden layers [19]. The hidden layers are the ones
between the input and output.

ANNs are said to be shallow when they have only a single hidden layer
and many neurons. On the other hand, deep networks are said to be composed
of more than one hidden layer. If there is no feedback from the outputs towards
the network’s inputs, it is referred to as a feed-forward neural network. The
FFANN structure is illustrated in Fig. 2.2.

Figure 2.2: Feed-forward Artificial Neural Network structure with one hidden-
layer, adapted from [51]

2.2.7
Deep Autoencoder (DAE)

An autoencoder is a type of neural network. It consists of an encoder and
a decoder connected in serial, each owning a single hidden layer. It learns the
intrinsic network features by reconstructing the original network at its output
layer [52].
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The main difference between a traditional autoencoder and a deep
autoencoder is that the DAE contains more than just one hidden layer in its net
[53], as illustrated in Fig 2.3. It learns a more robust feature representation in
an unsupervised way [52]. It allows an effective feature extraction through
hierarchical nonlinear mapping when multiple hidden layers are involved,
resulting in a reduction of training dataset [53].

Figure 2.3: Deep autoencoder architecture, adapted from [54]

The encoder module The loss function can be expressed as in (2-21) for
an unlabelled dataset X = [x1, x2, x3,· · · ,xn]:

L = f (ϕ : X, X) = 1
n

n∑
i=1

(1
2 ∥x̂i − xi∥2

)
+ λ (ϕ) (2-21)

2.3
Hyperparameters Optimization

There are two variables that are important when it comes to machine
learning algorithms [55]: Parameters that are values that the algorithm tunes
according to the provided data set and the hyperparameters that are parame-
ters defined before the training step that defines how the training of the model
is supposed to happen.

The choice of these parameters affects directly the performance of the
model, and there is not much guidance on how to choose the hyperparameters,
that’s why it is important to tune or optimize this values. Optimize these hy-
perparameters means to find a combination of hyperparameters that performs
best when measured in a validation set.

This optimization can be done by some approaches such as grid search,
random search and Bayesian search. This research uses random search for the
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optimization of the hyperparameters. Fig 2.4 illustrates two approaches, grid
and random search, showing that random search explores the hyperparameter
space more widely. The optimal point, represented by the blue circle found by
random search stand for a more accurate model than the one in grid search
even though they both have the same number of trials [56].

Figure 2.4: Comparison between grid search and random search for hyperpa-
rameter optimization, adapted from [56]

Random search randomly picks hyperparameters and trains the model
using a training set. This approach consumes less time and resources [55] since
it doesn’t depend on the results of previous training jobs. This way, a maximum
number of concurrent training steps can be performed without affecting the
performance of the search.

In random search, the number of trials is defined in order to set the
number of sets of hyperparameters to be tried [55].

Another type of hyperparameter optimization method is Adam optimiza-
tion algorithm. It was proposed by Kingma and Ba [57] in 2014 and, according
to them, its is computationally efficient and has little memory requirement. It
is well suited for problems that are large in terms of data. This optimization
method is a stochastic gradient descent method, based on adaptive estimation
of first and second-order moments [57].

2.4
Model Validation

The validation process is essential to guarantee the generalization of a
machine learning model to decide which model performs best.
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2.4.1
Cross Validation

Cross-validation is a resampling approach, a statistical technique used to
test a machine learning model’s ability to generalize an independent data set
or data not used to train the test set.

Just a limited amount of data is available in most cases [58]. That is
why splitting the data is needed, so part of the data is used for training the
algorithm (training set), and the other part is used to evaluate the algorithm’s
performance (validation set). The model’s training is often done within an
iterative process. In each iteration, the performance is measured to update the
model parameters for error reduction when applied to the data in the training
set. Therefore, test data should not be used during model training and tuning.
Otherwise, the generalization error would be unreliable [59].

Cross-validation can be used for several applications, such as regression
and classification. For this research, aiming for better data classification, the
Monte Carlo Hold-out Cross Validation was chosen.

2.4.2
Monte Carlo Hold-out Cross-Validation

It was proposed by Picard and Cook [60], and, according to Lendasse et
al. [61] in this validation method, the data is randomly divided into several
train and validation sets. According to Xu and Liang [62], this process is
repeated N times (N = 1,2,3, . . . , N) and is defined by (2-22)

MCCV nv (k) = 1
Nnv

N∑
i=1

∥ySv(i) − ŷSv(i)∥2 (2-22)

Figure 2.5: Monte Carlo Cross-Validation with 100 iterations architecture

where nv = n − nc samples for the validation model, nc is the samples for the
fitting model, Sv corresponds to the samples of the validation sets.
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Figure 2.5 illustrates the Monte Carlo Cross Validation dynamics. Data
is randomly splitted, being the train set represented in gray and the test set
represented in white. This s, the train-test split percentage vary from iteration
to iteration. The model is then fitted on the train data set for each iteration
and a test error is calculated. After the N iterations, the average of the errors is
taken using Equation (2-23). This process is usually known as the evaluation
of residuals.

Error = 1
N

N∑
i=1

Errori (2-23)
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3
Establishing compromise between model accuracy and hard-
ware use for distributed structural health monitoring

This chapter introduces the first experimental test-bed structure and its
data used to conduct the research and the obtained results.

3.1
Test bed and structure

The first experimental setup approached in this research is a building
structure, displayed in Figure 3.1. It consists of a four-degree of freedom three-
story building formed by aluminum plates (30.5 x 30.5 x 2.5 cm) and columns
(17.7 x 2.5 x 0.6 cm) mounted with bolted joints [9]. This structure was
mounted on the rails to allow movement in only one direction (x-direction,
as shown in Figure 1). In addition, a column (15.0 x 2.5 x 2.5 cm) is arranged
in the center of the plate corresponding to the upper floor to simulate damage,
inducing a non-linear behavior when it collides with a bumper mounted on the
floor below. The position of the bumper is adjustable to vary the extent of the
impact that occurs at a specific excitation level.

Figure 3.1: Three-story building test bed structure illustration.
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3.2
Data Acquisition System

The Los Alamos National Laboratory obtained the data used in this
research by load cells and accelerometers. A load cell with 2.2mV/N sensitivity
was mounted at the end of a stinger to measure the input force of the shaker
that stimulates the structure. Four accelerometers with 1000mV/N sensitivity
were mounted in the centerline of each floor on the opposite side of the
excitation source. The data acquisition system used to collect the data was a
Dactron Spectrabook. This system provides the excitation signal to the shaker
since it is connected to a Techron 5530 Power Supply Amplifier.

According to the Technical Report [9], the sensor signals were discretized
with 8192 data points sampled at 3.125ms intervals with a sampling frequency
of 320Hz, which yielded time histories of 25.6 seconds in duration. The
excitation level was set to correspond to 20N RMS measured in Channel 1.

3.3
Dataset

The data considered 17 structural states, described in Table 3.1. Force
and acceleration time histories were collected for various structural state
conditions.

The structural state conditions are divided into four main groups: base-
line condition, which is the reference structural state and is labeled as State 1;
the group of conditions where the mass and stiffness of the columns change, la-
beled as State 2 to 9; the group of conditions where damage state are simulated
by introducing nonlinearities using the bumper and the suspended column by
varying the gap between them labeled as State 10 to 14 and; the last group that
simulates the damages with the bumper and the column plus a mass addition
in different floors at a time labeled as State 15 to 17.

The structure was excited ten times for each structural state to consider
the variability of the data. Thus, ten-time histories were measured for each of
the 17 structural states for all five transducers (850 tests). The data set for
the 850 tests performed on the structure consists of an array of rows, columns,
and depth. The lines refer to all samples obtained during 25 seconds in each
of the 850 tests; the five columns refer to each of the five channels, and the
850 depth columns refer to the 850 tests performed (10 tests for each of the
17 states for each of the five channels).

Figure 3.2 (a) show the acceleration-time history for States 1, 3, 6, 10
and 16. A closer view in time can be seen in Figure 3.2 (b). Analyzing the
time history, some amplitude differences can be seen as the situation changes.
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Figure 3.2: Acceleration-time history from Channel 5 in different states (a)
and zoom view in time (b).
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But it is easier to see the differences and identify any damage to the structure
when looking at the FRF plots or the extracted features of the model, which
will be explored in the upcoming sections.

Table 3.1: Data labels of the structural state conditions [9]
State Condition Description

1 Undamaged Baseline condition
2 Undamaged Mass = 1,2kg at the base
3 Undamaged Mass = 1,2kg at the 1st floor
4 Undamaged 87.5% stiffness reduction in column 1BD
5 Undamaged 87.5% stiffness reduction in column 1AD and 1BD
6 Undamaged 87.5% stiffness reduction in column 2BD
7 Undamaged 87.5% stiffness reduction in column 2AD and 2BD
8 Undamaged 87.5% stiffness reduction in column 3BD
9 Undamaged 87.5% stiffness reduction in column 3AD and 3BD
10 Damaged Gap = 0.20 mm
11 Damaged Gap = 0.15 mm
12 Damaged Gap = 0.13 mm
13 Damaged Gap = 0.10 mm
14 Damaged Gap = 0.05 mm
15 Damaged Gap = 0.20 mm and 1.2 kg mass at the base
16 Damaged Gap = 0.20 mm and 1.2 kg mass at the 1st floor
17 Damaged Gap = 0.10 mm and 1.2 kg mass at the 1st floor

3.4
Results and Analysis

This section will show the results obtained from the dimensionality
reduction of the model and the binary classification results of the data.
According to Figueiredo et al. [32], for this particular case, the optimal
order stands between 15 to 30. These orders allow discrimination between the
undamaged and damaged states when all conditions proposed in Table 3.1 are
considered. For this paper, a model of order 30 is constructed, generating, for
each channel, one 850 x 31 matrix of parameters. As the features are extracted
and plotted in a graph, it is clear to identify and separate the undamaged data
from the damaged data. Fig. 3.3 show some of the Channel 5 features plots for
undamaged states 1, 3, and 6 and damaged states 10 and 16. It suggests that
the more nonlinearities introduced to the structure, the more decreased the
features’ amplitude. In the upcoming subsections, results of the dimensionality
reduction and separation of the between damaged and undamaged states are
shown, confirming it can perform with good accuracy compared to the full
data.
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Figure 3.3: Channel 5 AR(30) features.

3.4.1
Matrix concatenation and model accuracy analysis

The PCA algorithm was designed to retain 99% of the data variability to
perform the dimensionality reduction of all concatenated data. That resulted
in a model containing 11 principal components, as illustrated in Figure 3.4. It
resulted in a matrix of 850 x 11 parameters with 99,23% of explained variance.
This smaller matrix in dimensions and byte size can perfectly describe the
system and be well classified using the proposed machine learning techniques.

For the classification step using Monte Carlo Hold-Out Cross-Validation,
a hundred models were created randomly for training and test stages from
all parameter matrices obtained during the feature extraction step, using a
50/50 ratio for both the test and training sets. Some hyperparameters were
chosen manually for each model to guide the learning process and are listed
in Table 3.2. The hyperparameters were later optimized to get the most out
of the classification process. The optimization algorithm used in this case was
the random search that performs a randomized search on hyperparameters to
choose the one that performs best.

LGR classifier implements logistic regression using liblinear as the algo-
rithm used in the optimization problem. It supports two binary linear clas-
sifiers: LGR and SVM [63]. The C value parameter describes the inverse of
regularization strength. The smaller the value, the stronger the regularization.
The kernel is the main hyperparameter of an SVM model. Linear, polynomial,
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Figure 3.4: Explained variance ratio vs. total principal components.

radial, and sigmoid kernel functions were set to avoid complex calculations.
Some other parameters must be specified when kernel types are defined, such
as C values for linear kernel functions, the degree for polynomial functions, and
the kernel coefficient (γ) for radial, polynomial and sigmoid kernel functions.

Table 3.2: Model hyperparameters
LGR

C values Between 10−1 and 103

Solver "liblinear"
SVM

C values Between 10−1 and 103

Kernel type “linear”, “poly”, “rbf” and “sigmoid”
Kernel degree 2 to 5
Kernel coefficient 10−4 and 10

DTC

Split criterion "gini"and "entropy"
Split strategy "best"and "random"

KNN

Number of neighbors Between 2 and 100
RFC

Split criterion "gini"and "entropy"
Split strategy "best" and "random"
Number of trees Between 2 and 100
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When it comes to DTC, the split criterion that measures the quality
of the split must be set. Ginni and Entropy were chosen for starts and the
strategy used to select the best split were "best" and "random," which selects
the best split and the best random split, respectively. For the KNN model, the
number of neighbors (K) is the main deciding factor and it was set between 2
and 100, randomly between the iterations.

The accuracy results can be seen in Table 3.3. A better view of the
accuracy results is illustrated in Fig. 3.5.

Table 3.3: Accuracy results for every data classification
All Features PCA Ch5 Ch4 Ch3 Ch2

LGR 0.9965 0.9731 0.9563 0.9549 0.8873 0.8644
SVM 0.9972 0.9863 0.9664 0.9611 0.8897 0.8882
DTC 0.9625 0.9366 0.8915 0.8913 0.7605 0.6540
KNN 0.9874 0.9750 0.9002 0.8982 0.8288 0.6986
RFC 0.9885 0.9722 0.9354 0.9303 0.8388 0.7317

The individual channel classifications perform better from Channel 4
and 5 since their accelerometers are closer to the damage source (bar on the
3rd floor + bumper on the 2nd floor). This pattern follows for all predicted
models, where the accuracy results related to the accelerometers farther from
the damage source are smaller. The accuracy score from the PCA of all data
is only 1,64% (medium) less than the whole matrix, which can be considered
acceptable since the accuracy remains at good values, above 90%. Nonetheless,
the number of inputs is considerably smaller when using PCA compared to all
channels. This will be investigated in the next section.

Figure 3.5: Accuracy plots for all machine learning models used for data
classification.
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Figure 3.6: Byte sizes of SVM model (a), LGR model (b), DTC model (c),
KNN model (d) and RFC model (e)

3.4.2
Model Byte Size Analysis

When it comes to the size in number of bytes of the model, the results
of the average number of bytes were calculated using the function "getsizeof"
from the system-specific parameters (sys) module in Python and can be seen
in Figure 3.6. The mean values of the sizes were concatenated in Table 3.4.
Putting these data into a graph to better visualize the data, as illustrated in
Fig. 3.7, it is visible that the dimensionality reduction models of the majority
of the methods have a lower number of bytes size comparing to the individual
channels themselves.

Except for the RFC models, which are the ones with most significant
byte sizes, including the model that had its dimensionality reduced, that has
above 2Mb in size. This behavior can be explained since the RFC model is
more robust when compared to the other models, requiring more space since,
in this case, 100 trees are associated to carry out the model’s classification.

After performing the dimensionality reduction, the overall byte size of
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Table 3.4: Mean bytes numbers result for every data classification model in
Mb

All Features PCA Ch5 Ch4 Ch3 Ch2
LGR 0.048 0.066 0.051 0.051 0.051 0.051
SVM 0.281 0.091 0.136 0.120 0.142 0.132
DTC 0.058 0.060 0.060 0.064 0.073 0.087
KNN 0.472 0.092 0.154 0.154 0.154 0.154
RFC 2.464 0.561 1.044 0.645 1.656 1.875

the models is smaller by 27.15% (mean) than all channels concatenated and
even the individual channels alone. And, as seen in section 5.1, the accuracy
is only 1.64% smaller when comparing the results from all data combined and
the PCA data.

Figure 3.7: Comparison between model sizes

This can be beneficial in terms of having a smaller data set that describes
the system’s behavior adequately, which reduces computational efforts and
reduces the time of execution of the algorithm. Besides, it may cover most
cases since larger data sets, like the one in this study case, can eventually have
their linear features set reduced to facilitate their deployment.
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3.5
Chapter Remarks

Based on linear feature extraction, an approach of dimensionality reduc-
tion and several data classifications were performed with Monte Carlo hold
out cross-validation. The main idea is to relate the byte size of the full models
and the byte size of the dimensionality reduction of the models, verifying the
changes in size and accuracy of the results when applying PCA to the exten-
sive linear features data set compared to its original set. A hundred random
validation experiments were conducted, and the results prove that the dimen-
sionality reduction of this model was well succeeded in terms of size reduction,
good description of the model, and accuracy results of the classification step.
Making it reasonable and accurate to work with smaller version models of a
larger data set.
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4
Rotating Machines Vibration Monitoring with Deep and Shal-
low Learning on Nvidia Jetson Embedded Computers

This chapter introduces the second experimental test-bed structure, and
its data used to conduct the research and the obtained results.

4.1
Experimental Setup Description

The test rig is composed of a DC motor connected to two solid discs
by a low-stiffness shaft. The motor is an ENGEL GNM5480-G6.1 DC motor
with a planetary gearbox [64]. The shaft transmits rotation to the discs, which
are free to rotate, and bearings constrain lateral motions. Besides, we may
independently apply resistive torques to the discs. There are two braking
devices, consisting of pins that pass through the bearing support and touch
the discs, as shown in Fig 4.1. The dry contact between the pins and the discs
produces friction torque, leading the system to exhibit torsional vibrations.
The system may exhibit torsional vibration without friction when the natural
frequencies are excited. The dry friction may originate stick-slip phenomena,
in general undesirable as it implies energy storage in elastic elements, which
may deteriorate once it is released as kinetic energy. Thus it is essential to
monitor friction conditions in rotating machinery.

We measure the angular displacement measurements of the discs and
the motor using three LS Mecapion H40-8-1000VL encoders. The encoders are
optical quadrature type and have a resolution of 1000 ticks per revolution,
and we use these measurements to obtain the angular velocities by differentia-
tion. Load cells S10 R9 255 from Kratos equipment and SV50 R-5 from Alpha
Instruments measure the normal contact forces between pins and discs. Addi-
tionally, we utilize the National Instruments cDAQ- 9174 USB with four slots
to perform the data acquisition and recording, with a mean sampling time of
10ms (milliseconds). For data real-time visualization and saving, we use the
LabView software [65].

A measurement campaign was conducted with constant input velocity
with three different friction levels by varying the load on the contact pin,
namely: nominal (no contact), moderate (5 N), and severe (10 N) conditions.
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Figure 4.1: Test rig schematic description (a) and actual picture (b). The
variable friction is emulated with a force-controlled pin that adds resistive
torque to the second disk, which is detailed in (c).

The velocity-time history (RPM-sec) in the three friction levels is illustrated
in Figure 4.2. The goal hereafter is to construct an unsupervised data-driven
modeling workflow capable of distinguishing such conditions and building an
online monitoring tool.

Figure 4.2: Velocity-time history in three friction levels
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4.1.1
Embedded Computing Platform

In the scope of the present research, the Nvidia Jetson Nano1 was used,
it is illustrated in Fig 4.3. It is a relatively cheap embedded system-on-module
(SoM), including an integrated 128-core Maxwell GPU, quad-core ARM A57
64-bit CPU, 4GB LPDDR4 memory, and support for MIPI CSI-2 and PCIe
Gen2 high-speed I/O.

Figure 4.3: Nvidia Jetson Nano [66]

The same allows the user to develop distributed machine learning ap-
plications. Furthermore, such a platform is handy for vibration monitoring of
rotating machines, given the sampling time required, which is usually unavail-
able in traditional SCADA systems [67].

4.2
Results and Analysis

The overall method for embedded anomaly detection is described in
Figure 4.4. The signals are windowed using a receding-horizon strategy to
generate an input-output tuple database, then fed to the feature extraction
phase using PCA or autoencoders. The models are then created using PCA
and shallow learning models, while the autoencoder is plugged into a FFANN
classifier using transfer learning. Finally, the models are embedded to assess
their performance for real-time inference.

4.2.1
Dimensionality Reduction

An autoencoder architecture was used with (50,25,3,25,50) hidden neu-
rons architecture. The bottleneck with three neurons represents the reduced
space. A plot of the bottleneck representation and the reconstruction of the

1https://developer.nvidia.com/embedded/jetson-nano-developer-kit

https://developer.nvidia.com/embedded/jetson-nano-developer-kit
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Figure 4.4: Description of the experimental setup data and the embedded
vibration monitoring tool.

encoder is illustrated in Fig. 4.5. One can see that there is a reconstruction
error, and there is room to improve the autoencoder.

Figure 4.5: Comparison plot of the training set and the reconstruction of the
encoder in the final output of the network

The PCA was set to retain 95% of the variance, which resulted in only
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Figure 4.6: Explained variance ratio vs. total principal components.

nine principal components out of 5,000 dimensions. The explained variance is
illustrated in Fig.4.6.

Both autoencoder and PCA results are shown in Fig. 4.7a and Fig. 4.7b,
which displays great results in terms of class separability. The nominal friction
level data, illustrated in blue, is concentrated together in little blocks of data
that can be distinguished from the medium and severe friction level data that
are more sparsed in the plane but still concentrated together.

(a) (b)

Figure 4.7: Unsupervised learning (a) results of the unsupervised dimension-
ality reduction using autoencoder and (b) PCA

The architecture of the autoencoder is given in Fig. 4.8.
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Figure 4.8: Autoencoder architecture depicted.

4.2.2
Model Performance Analysis

The results of the models are depicted in Figure 4.9 in 50% of holdout
data. The hyperparameters used in this case were the default parameters, listed
in Table 4.1. The model is compiled using the Adam optimizer with 0.001 of
learning rate.

Table 4.1: Model hyperparameters
LGR

C values 1.0
Solver "rbf"

SVM

C values 1.0
Kernel type “rbf”
Degree 3
Gamma “scale”

ANN

Unit 10 and 3
Activation Function "Elu" and "Softmax"

The outputs of the autoencoder are attached to a feedforward neural
network using transfer learning and retrained using supervised learning. A
sequential model was used using Keras API from Tensorflow library to add
a trainable classifier on top. The activation function is used to introduce a
nonlinearity on each node of the neural network. For this particular case, the
Exponential Linear Unit (Elu) and Softmax were used. Softmax converts a
vector of value to a probability distribution. The model’s output shape vary
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depending on the layer. There are 3 dense layers of output (None, 10) and one
dense layer of output (None, 3), same as the encoder.

The increase of friction causes the increase of amplitudes of vibration,
justifying the use of the velocity signal time series to distinguish the system’s
friction level. One may observe a clear difference between the nominal, moder-
ate, and severe friction conditions in both results of unsupervised dimensional-
ity reduction displayed in Fig. 4.7a and b. This difference is better recognized
in the PCA results. Figure 4.9 confirms the better performance of shallow
models for the data collected and used in this analysis. The SVM model out-
performs other models with respect to accuracy, while the linear model is the
fastest. The autoencoder performs poorly when compared to SVM.

Figure 4.9: Evaluation metrics in holdout in terms of confusion matrices,
balanced accuracy, inference time (in seconds) and byte size in Mb for the
linear model using the embedded platform (a), autoencoder (b), and SVM (c)

As seen in Figure 4.9, the linear model is used as a baseline and performs
poorly compared to the autoencoder and SVM, which present great accuracy.
However, the computing time is much shorter for the SVM, which is essential
for computational resource optimization. When it comes to the size of the
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models, the linear model being the simplest one, has smaller size compared to
the others. The encoder associated with the FFANN is the biggest one, having
32Mb in size, since it is the more robust of the models.

Nonetheless, rotating machines may be subjected to a range of friction
values and not specific levels, increasing the complexity of fault detection.
Deep models may better address this complexity. Additionally, we have shown
that the models may be easily embedded on a small platform suitable for edge
computing, which provides real-time performance for data processing (see Fig.
4.9 for execution time-per-sample).

Figure 4.9 also lists the F-score values of the classification, calculated
from the precision and recall using the Scikit Learn metrics library. The best
case scenario happens when F-Score is equal to 1 and worst case scenario
when F-Score is equal to 0. Since this is a multi-class classification, the F-
scores represents the average of the scores of each class. This values confirms
the god precision of the SVM classification of the data, being simpler and more
effective.

4.3
Chapter Remarks

The present work has shown an efficient implementation of an embedded
system of machine learning models to diagnose rotating machinery using
vibration data at high-frequency rates. Shallow models have shown better
results in running time, memory usage, and accuracy. Furthermore, feature
reduction running online with model inference shows that a cheap GPU-
based platform can be used to enable decentralized diagnosis running at high-
frequency rates, which is appropriated in the edge computing paradigm.

The feature extraction process made by PCA and autoencoders was
effective in separating nominal and abnormal friction states, indicating that
unsupervised learning would be applicable for the task at hand [68]. As labeled
data is expensive to obtain, such a procedure certainly adds practical appeal
for applications if available. Moreover, the autoencoder results show that it
might be a better solution for cases involving more complex failure modes.
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5
Conclusions

5.1
Final considerations

This research aimed to identify damage in two structures using different
approaches from the comprehensive range of machine learning options. The
used models were based on two structures, a static one represented in the three-
story building of the Los Alamos Laboratory; and a rotational one capable of
reproducing torsional behavior like the stick-slip phenomenon.

As data volumes grow, finding optimized models through more efficient
data modeling pipelines is important as smaller models lead to better embed-
ded solutions, achieving good results in efficiency, computational effort, and
performance.

In the first case, we proved that a correlation between the size of the
models and the accuracy exists and can provide better behavior even when
the models’ size is reduced using dimensionality reduction models like PCA,
for example. After the reduction of the model size and a hundred of random
validation experiments, the results of the reduced models proved to have good
accuracy in the classification and description of the model, proving that smaller
versions of the original model can perform well. Furthermore, results show that
the closer to the damage source the data acquisitor is, the better the accuracy
results. Using more than one data source can increase these results even if it
is far from the damage source.

In the second case, the identification between normal and abnormal
states for the rotating machinery using vibration data at a high-frequency
rate was conducted by implementing a shallow and deep embedded system of
machine learning models. Results show that shallow models are better when
considering running time and accuracy. The feature extraction using PCA,
autoencoder and unsupervised learning for the classification step was very
successful. Proving that autoencoders can be a good solution for more complex
failure models.
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5.2
Future work

As a continuation of this work, it is intended to extract the nonlinear
parameters of this same system to understand the behaviour of the results
related to the size in bytes of the models and the accuracy of the results.
Also test different hyperparameters optimization methods and in different
classification applications.

Future work also focuses on real-time implementation of hardware of op-
timized intelligent classifiers using Field Programmable Gate Arrays (FPGAs)
as they have a parallel architecture which makes them suitable for machine
learning applications, quantization of models with a focus on embedded sys-
tems and scalability to lower cost hardware.
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